HomeAbout UsCharacteristic businessAgent BrandCareersContact UsSite MapOnline communications
    Products Search
    Product Catalog
Nucleic acids
 Nucleic acid purchase  
Nucleic acid amplification  
Nucleic acid analysis   
Nucleic acid isolation and purification
 Protein purchase   
Protein isolation & purification
 Protein expression  
Protein analysis
 Cell purchase    Cell isolation
 Cell cultivation and
microorganism fermentation
 Cell analysis
    Electronic journals
Your position:  Home >> Industry News >> 
Hepatitis C: Key Molecules That Inhibit Viral Production Identified

ScienceDaily (Mar. 10, 2009) — In a new study, led by Professor Donny Strosberg of Scripps Florida, researchers describe
peptides (molecules of two or more amino acids) derived from the core protein of hepatitis C. The team found that these
peptides inhibit not    only dimerization of the core protein (the joining of two identical subunits), but also production of the
actual virus itself. "We went for the simplest solution, taking a peptide from core to see if we could block the interaction,"
Strosberg said, "and it did."

The Problem with Hepatitis C

With over 170 million people infected worldwide by HCV, new therapeutic strategies for HVC—a blood-borne disease that affects the
liver—are urgently needed. But one of the critical problems in developing drugs for HCV is that it mutates at such prodigious rates.
An RNA virus like hepatitis C can mutate at a rate estimated as high as one million times that of DNA viruses; in contrast, DNA
viruses contain an enzyme (polymerase) that acts as something of a proof reader to ensure that newly transcribed DNA strands
are the same as the original, helping to reduce mutations.

"In one sense, the ongoing issue with hepatitis C is that there are still so very few drugs to treat the virus and very few tools to study it,"
Strosberg said. "We set out to develop new tools and to identify a new target – core, the capsid protein. By targeting the interactions of
core with itself or other proteins, we could reduce the problem of rapid mutation not only because the core protein mutates significantly
less, but also because mutations that would affect the interface between core and itself or other proteins would often be more likely to
deactivate the virus, in contrast to mutations in viral enzymes which often lead to increased resistance to drugs."

Recent efforts to develop therapeutic strategies against HCV have concentrated on designing inhibitors that target several of the 10
HCV proteins that comprise the virus, including mostly the non-structural proteins. However, as the study points out, the one
HCV structural protein that has not been targeted yet is the core protein, the one responsible for assembly and packaging of the
HCV RNA genome.

The Core of the Matter

Core, the most conserved protein among all HCV genotypes, plays several essential roles in the viral cycle in the host cell; studies
have suggested that these core-core or core-other protein interactions can modulate various functions including signaling, apoptosis
or programmed cell death, lipid metabolism, and gene transcription.

The core protein is particularly important in the assembly of the hepatitis C nucleocapsid, an essential step in the formation of
infectious viral particles; the nucleocapsid is the viral genome protected by a protein coat – the capsid. This core protein plays an
essential role in the HCV cycle during assembly and release of the infectious virus, as well as disassembly of viral particles upon
entering host cells.

Looking closely at the core interaction with itself, Strosberg developed several novel quantitative assays or tests for monitoring these
protein-protein interactions with the specific goal of identifying inhibitors of the core dimerization, which would block virus production.

"People have been dreaming about inhibiting protein-protein interactions, as a new El Dorado for finding novel drug targets," says
Strosberg, "but few conclusive studies have emerged, except in the virus-host area."

Inhibition of HCV Production

The new research, however, led to the discovery of two peptides that inhibited HCV production by 68 percent and 63 percent,
respectively; a third related peptide showed 50 percent inhibition. When added to HCV-infected cells, each of the three peptides
blocked release but not replication of infectious virus; viral RNA levels were reduced by seven fold. Strosberg notes that the
efficacy of small molecules like these can often be improved over initial levels.

"After we'd finished our work, we learned that Frank Chisari – one of the leading experts on HCV who works at Scripps Research in
La Jolla – had been looking at similar peptides using a very different approach," said Strosberg. "One of his peptides was the same
as ours – it also inhibited virus production. It's an incredible coincidence and a confirmation of our study."



Previous:>> Discovery Of Protection Against Cell Division Failures
Next:>> 2015 Global life sciences outlook
  网友评论: (只显示最新10条. 评论内容只代表网友观点, 与本站立场无关!)
  • 游客『yilptklsnpj』于2017-2-2 6:29:17发表评论:
  • 评分: 3分
    nT0SDD  <a href="">mlcxyveyifyd</a>, [url=]ctivikzczsbg[/url], [link=]embtgmgpzcsc[/link],
  • 游客『qauzmdj』于2017-2-2 6:27:04发表评论:
  • 评分: 3分
    pP0I8B  <a href="">nqxnvqejbjaz</a>, [url=]vfjaihkodnge[/url], [link=]ximqfzfdaxdo[/link],
  • 游客『gsvfiwh』于2017-2-2 6:16:15发表评论:
  • 评分: 3分
    UXbjSm  <a href="">vnwskrmimvue</a>, [url=]izbsnlyevblp[/url], [link=]fdrrjkozkcjd[/link],
  • 游客『pxvwosa』于2017-2-2 3:51:50发表评论:
  • 评分: 3分
    X8XNbr  <a href="">iaofvktwngru</a>, [url=]zeydccheyiio[/url], [link=]rsgvuxdwljdk[/link],
  • 游客『ewaxcgpjr』于2017-2-2 3:36:34发表评论:
  • 评分: 3分
    Cmru7z  <a href="">phpnesjvkkdm</a>, [url=]xmpfnhlksqex[/url], [link=]ahvcxkjasonn[/link],
    Address: Address: No.11, Dongfang East Road, Chaoyang District, Beijing, China China Post code: 100191
    Tel:00400-810-0881 0086-10-8441 5678    Fax:0086-10-84415679    京ICP备06004786号

    trade trade Rhinestone Jewelry business trade wholesale clothing lawyer Rhinestone Jewelry